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Fact 1- ExponenQal growth of cyber-aGacks

• 5887 healthcare data breaches 

• 94% of US hospitals affected 

• 2 breaches per day in 2023 

• 365K records breached per day 

• 382 million records exposed 

• spike in 2015: 113 M 

• Anthem: 78 M 

• breaches from hacking, the^ or loss 

• now mostly hacking (67%) 

• breaches cost >$30 billion in 2023

4 HIPAA Journal, 2024
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Fact 2- Fast spread of cyber-aGacks

spread over 4 days: 12-15 May 2017 
• > 200,000 computers in 150 countries 

• universiQes, hospitals, governments, 
police, transportaQon, telecom, 
banks 

• England NHS affected +++ 
• damages: $4-8 billion

5

Wannacry ransomware cryptoworm 

• EternalBlue 
• exploits SMB vulnerability 

• gets access + spreads 

• DoublePulsar  
• loads malware

HUGE wake-up call for cybersecurity in healthcare!

discovery of kill switch stopped it (for $10) 
     http://www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com

McNeil, Malwarebytes, 2017 

Symantec, 2017

http://www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com


Fact 3- Fast access to data in cyber-aGacks

6

Bromiley, Think Like a Hacker, 

SANS Survey, September 2022

• a^er system breached by hackers 

• average Qme before: 

• most data exfiltrated: < 5h  

• breach detecQon: 235 days 

• breach containment: 323 days 
• MUCH faster detecQon speed needed

Cost of a Data Breach 

Report, IBM Security, 2022



Example 1: network intrusion aGacks

1.  reconnaissance 

2.  break perimeter 

3.  pivot to private network 

4.  scan private network 

5.  compromise device

7 Weidman, Penetration testing, 2014



Example 2: DDoS aGacks

• DDoS: distributed denial-of-service  

• army of computers (botnets) recruited 

by a central command and control 

center 

• botnets send many simultaneous 

requests to a single computer 

• overwhelms computer, which becomes 

unable to performs normal tasks 

• largest DDoS aGack in history  

• June 1, 2022 

• 5256 botnets located in 132 countries 

• up to 46 million requests/sec

8
thehackernews.com

46 million requests/sec
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Example 3: malware

• >1 billion malware programs 

• 560,000 new ones per day 

• increased by 60% last year 

• 58% are Trojans 

• 4 enterprises hit by ransomware aGack 

per minute 

• types of malware: 

• virus: code aGached to executable file  

• worm: self-replicates and propagates 

• tojan: disguised as legiQmate so^ware 

• ransomware: encrypts files for ransom 

• spyware: steals informaQon 

• rootkit: enables covert access

9
dataprot.net/staQsQcs/malware-staQsQcs/



Verizon DBIR Report, 2021

Example 4: phishing

phishing: fake emails 
• induce individuals to reveal confidenQal 

informaQon 

• 3 billion phishing emails every day 

• top cause of data breaches

10

malicious file attachment 
• office (38%), archive (37%), pdf (14%) 

• virus or trojan 

• executes when opened by user 

• e.g. U Washington Med breach in 2013

fake links 
• spoofed URL 

• youtube.com   → 

• copycat, homoglyph 

• we11point 

• wellsfɑrgo.com 

• instagɾam.com 

• аррӏе.com   → 

• e.g. Anthem 78M records breach in 2015

http://hacker.ru
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TradiQonal arsenal

• host-based 
• user authenQcaQon (passwords) 

• access control 

• anQ-malware 

• host-based intrusion detecQon 

systems 

• data encrypQon 

• email filtering (spam, phishing)

12

• network-based 
• network-based intrusion detecQon 

systems 

• firewalls 

• virtual private networks (VPNs) 

• load balancing 

• VLAN support



Network intrusion detecQon

• signature-based 

• monitors data for known paGerns 

• pros: simpler, effecQve in known aGacks 

• cons: ineffecQve against unknown aGacks, 

polymorphism and obfuscaQon 

• anomaly-based 

• looks for deviaQons of normal acQvity 

caused by users or processes 

• pros: effecQve for zero-days 

• cons: high false posiQves 

• hybrid 
• pros: reduces false posiQves 

• cons: complex models

13



Malware detecQon

• techniques for malware detec#on 

• signature-based (paGern-matching) 

• not suitable for new variants 

• inefficient given variants & rates of 

infecQon 

• behavior-based (what malware does) 

• heurisQc-based (rules) 

• techniques for malware analysis 

• sta#c (reverse engineering) 

• Qme-consuming 

• defeated by obfuscaQon 

• dynamic (execuQon in sandbox) 

• evaded by malware detecQng sandbox 

• hybrid (staQc + dynamic)

14



Phishing detecQon

• blacklist 
• databases of malicious websites 

• visual similarity 
• closeness of snapshot of a webpage 

with screenshots of legiQmate 

websites in a database 

• heuris#c 
• rules from experts 

• staQsQcal aGributes of websites

15
Valiyaveedu, IEEE ICCISc, 2021

Blacklist



Summary of tradiQonal approaches

• signatures 
• very efficient and quick 

• large databases of historical signatures of 

previously encountered aGacks 

• behavior 
• tries to detect variaQons from normal 

• no need for databases 

• hybrid 
• a combinaQon of both signatures and behavior

16



LimitaQons of tradiQonal methods

• overwhelmed by the scale 

• number of variants 

• rate of infecQons/aGacks 

• need to conQnuously update signature 

databases 

• zero-days (novel aGacks) 

• polymorphism and obfuscaQon 

• when first-line defense fails 

• not fast enough 

• delay aGack to detecQon: 235 days 

• delay detecQon to miQgaQon: 88 days 

• too dependent on humans 

• labor-intensive to analyze logs, code 

• prone to manual errors

17
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AI and deep learning

• ArQficial intelligence: replicaQon 

of human intelligence in 

computers 

• Machine learning: ability of a 

machine to learn using examples 

instead of hard coded rules 

• Deep learning: using neural 

networks with many layers 

• generaQve AI: create new data 

• LLMs: natural language 

processing

19

Artificial intelligence

Machine learning

Deep learning

generative 
models LLMs



• tradi#onal compu#ng 

• give computer 

instruc#ons to solve 

problem 

• specific code to convert 

inputs to outputs

Programming paradigms

• machine learning 

• give computer 
examples to solve 
problem


• finds patterns in data

• generates a model 

that can convert 
inputs to outputs

step 1

step 2

step 3

step 4

step 5



Requirement for deep learning

Faster machines and core 
(CPU/GPU)

Big data (with 
large dataset)

New models and 
algorithms



Model components: Neural networks

Fully connected 
• each node connected to next  

• predict outcomes from 

unstructured data

Convolu#onal 
• features indep. of posiQon  

• most common in CV imaging

Fully convolu#onal 
• produces full images 

• segmentaQon

Recurrent 
• feed own output as input  

• great for sequenQal data

Genera#ve adversarial 
• generates realisQc images  

• image enhancement

• based on brain funcQon 

• network of nodes 

connected by links 

• receive inputs 

• produce outputs



Math of neural nets

• x: input 

• w: weight  

• associated with link  

• b: bias (acQvaQon trigger)  

• associated with node 

• a: acQvaQon = σ(w⋅x+b) 

• σ( ): small changes in w, b 

produce small change in a
replaced by ReLU(x) = max(0,x)


in modern networks

x0

x1

w0

w1

a

b

a = σ ( x0⋅w0 + x1⋅w1 + b )

Sigmoid function
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low b

difficult to trigger

high b

easy to trigger

Math of neural nets



Models features (learned)

sample dog

should be 1

error = 0.58

should be 0

error = 0.75

0.42

Total error for this sample: 0.75 + 0.58 = 1.33

Mean error for training samples used for updates 
mean 
error

25

neural net
network links

0.75



update Bs
use errors to

mean 
error

Math of learning: backpropagaQon



network fully updated! 
ready for next example

Math of learning: backpropagaQon



• repeat until best fit is reached:


• Cost function 

• evaluates fit between NN outputs and targets

• Gradient descent 

• how to vary each w, b to improve fit

• Backpropagation 

• method to update w, b at each step

• each layer used to update w, b in previous layer

Machine learning fundamentals

Cost functions and gradient descent


Conor McDonald, Medium

cost 
function

Math of learning



Model aspects (not learned)

1. model architecture 

• layers: types, number, dimensions, 

connecQons 

2. hyperparameters 
• learning rate, batch size, opQmizer, 

regularizaQon, epochs, stopping 

criteria 

3. others aspects of training 

• data normalizaQon, augmentaQon, 

missing data, loss funcQon, 

evaluaQon metrics, iniQalizaQon and 

seed values

U-Net

• determined by experts from 

• domain knowledge 

• empirical experimentaQon 

• computaQonal constraints



DiscriminaQve vs generaQve models

• discrimina#ve model:  

• learn differences in paGern 

• learns boundaries between classes 

for classificaQon or predicQon 

• usually supervised learning

29

• genera#ve model:  

• learn the overall padern  

• learns distribuQon of data to 

generate new samples 

• usually unsupervised learning



DiscriminaQve models
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30

• genera#ve model:  

• learn the overall padern  

• learns distribuQon of data to 

generate new samples 

• usually unsupervised learning



Elements of discriminaQve models

Data:  

• general datasets  

• quality of data selecQon 

affects model performance

31

Zhang, AI Review, 2022

Intelligence:  

• develop models 

• combine models 

• evaluate effecQveness

Features:  

• data pre-processing 

• features extracted from data 

• manual (ML), automated (DL)

Applica#on:  

• models as soluQons 

• applicaQon deployment  

• specific environment



Data

32

Malware repositories 

• IoTPOT 

• VirusShare 

• VirusTotal 

• Drebin 

• MalGenome 

• AndroZoo

IoT traffic 

under aGack 

• IoT-23 

• TON_IoT 

• LITNET-2020  

• N-BaIoT

Network traffic 

under aGack 

• KDD Cup 1999 

• NSL-KDD 

• CTU-13 

• UNB ISCX 2012 

• AWID 

• CIC-IDS2017 

• CSE-CIC-IDS2018 

• CIC-DDoS2019

• benchmark databases
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Features/intelligence (ML)

33

K Nearest Neighbors (KNN) 
• supervised learning 

• uses proximity 

• classificaQon and predicQon

Support Vector Machines (SVM) 
• hyperplane that classifies data 

• maximum distance between 

data points of both classes 

• decision boundaries

Decision Trees 
• tree-like model of decisions 

• condiQon, based on which tree 

splits into branches 

• end of branch is decision 

• classificaQon and predicQon

• features are picked by humans 
• models: several approaches



Features/intelligence (DL)

34

Convolu#onal NN 
• data as arrays 
• fewer parameters  

• shared weights  

• features independent of 

posiQon 

Recurrent NN 
• feed own output as input  

• great for sequenQal data 

• capture temporal dependencies 

• can add cell memory (LSTM)

• features are picked by machines  
• models: deep networks of nodes connected by links 

• complex connecQons between nodes 

• here are most common models layers in cybersecurity

Fully connected 
• each node connected to next  

• predict outcomes from 

unstructured data



Examples of models

LeNet-5 (1998)

AlexNet (2012)

GoogleNet (2014)

ResNet (2015)



ConvoluQonal networks

Segnet

Mazurowski

Deep learning in radiology


arXiv, Feb 2018



• finds paGerns in images 

• filter: paGern to find 

• set of (learnable) weights 

• convoluQon value is degree of match 

between image and filter 

• filter example: 

Intuitively Understanding Convolutions for Deep Learning

Irhum Shafkat, Medium

ConvoluQonal layer



Filters

• iniQalized with random values 

• filters updated by backpropagaQon (they are learnable) 

• self-refine into progressively more complex feature filters on each layer

Layer 1 filters
Layer 2 filters Layer 3 filters



ApplicaQon

• PadernEx 
• detects cyber threats in real Qme 

• Darktrace 
• digital anQbodies to recognize and 

neutralize threats 

• DeepArmor 
• system against adversarial aGacks 

• X (Invincea) 

• understand and detect security threats 

• DataSense (Cognigo) 

• disQnguish and protect sensiQve data 

• Targeted Adack Analy#cs (Symantec) 

• uncover private and targeted aGacks.

39

AI-based cybersecurity soluQon of the year: Darktrace

• Intercept X (Sophos) 

• in-depth review to decide if files are safe 

• QRadar Advisor (IBM) 

• examine signs of vulnerability or 

exploitaQon 

• Cognito (Vectra) 

• detects aGackers in real-Qme



• Goal: detect 3 types of intrusion aGacks 

• Data: AWID WiFi traffic flow 

• 1900K train/validate, 474K test 

• Features: 

• 36 useful features out of 156 

• Intelligence: AE + DNN 

• unsupervised to extract useful features 

• supervised to train classifier 

• inputs (36): traffic flow features 

• outputs (4): normal, 3 types of aGacks 

• Results: 

• 99.9% accuracy 

• false alerts: 0.1% - 1.2% (flooding)

40

1- detect network intrusion

Rezvy, IEEE CISS, 2019



• Goal: detect DDoS aGacks 

• Data: CIC-DDoS2019 traffic flow 

• 162K train, 46K validate, 23K test 

• Features: 

• extract 77 flow features from database 

• Intelligence: RNN + AE 

• four hidden layers 

• unsupervised to extract useful features 

• supervised to train classifier 

• inputs (77): traffic flow features 

• outputs (2): normal, DDoS aGack 

• Results:  

• AUC of 0.988

41

2- detect DDoS aGacks

Elsayed, IEEE WoWMoM, 2020



3- detect malware

• Goal: detect and classify malware 

• Data: VirusTotal, VirusShare, IoTPOT 

• 74K binaries, 18 families, 24K unseen 

• Features: 

• malware ELF Linux binaries (IoT) 

• codify binaries into images 

• each pixel a byte of code 

• codify strings into semanQc vectors 

• Intelligence: CNN 

• components pre-trained individually 

• fusing most relevant features 

• inputs (2): images, codified strings 

• outputs (1): family 

• Results:  

• 99.78% accuracy

42

Dib, IEEE Trans Net 

Serv Manag, 2021



4- detect phishing

• Goal: detect phishing aGacks 

• Data: 

• 2141 phishing sites (Phishtank, Openphish) 

• 1918 legiQmate sites (Alexa, etc) 

• Features: 

• proposed 19 features (URL-based, login 

form, hyperlinks, CSS, web idenQty) 

• Intelligence: 

• random forests: ensemble of decision trees 

• SVM, NNs, logisQc regression, naive Bayes 

• Results (RF): 

• 99.09% accuracy 

• 99.39% true posiQve 

• 1.25% false posiQve

43
Jain, Telecom Syst, 2018.



AI successes in real cyber-aGacks

• Emotet malware 

• banking Trojan 

• “million dollar per incident” 

• disposable (one-Qme use) 

• polymorphic 

• self-obfuscaQng 

• very difficult to detect 

• February 3, 2018, 12:46 am 

• huge Emotet malware aGack 

• tried to aGack > 1000 vicQms 

• Windows Defender AV 

• layered machine learning 

• random forrest 

• detected and stopped aGack

44
Microso^, 2018



GeneraQve models

• discrimina#ve model:  

• learn differences in paGern 

• learns boundaries between classes 

for classificaQon or predicQon 

• usually supervised learning

45

• genera#ve model:  

• learn the overall padern  

• learns distribuQon of data to 

generate new samples 

• usually unsupervised learning



GeneraQve models (GenAI)

46
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GenAI: VariaQonal Autoencoders (VAE)

• unsupervised learning 

• encoder: compress input into simplified 

representaQon (latent space) 

• latent space 
• essenQal features 

• probabilisQc distribuQon 

• decoder: reverses latent representaQon 

• creates something new resembling examples

47

 Kingma, Welling, Auto-Encoding 

VariaQonal Bayes. arXiv, 2013



Example of VAE

48

• vary “intensity” of smile in original picture

original

White, Sampling GeneraQve 

Networks, arXiv 2016



GenAI: GeneraQve adversarial networks (GAN)

• compeQng modules 

• generator: produces fake samples 

• discriminator: decide if fake or real 

• implemented as CNNs 

• goal: creates fake sample that can fool 

discriminator (and humans)

49

Goodfellow, GeneraQve 

Adversarial Nets, arXiv 2014



Efros, Self-Supervised Visual 

Learning and Synthesis, lecture 

for 2016 ACM Prize in CompuQng

Example of GANs

50

• transform a horse into a zebra
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• transform a horse into a zebra



• find paGerns in text (LLMs) 

• data processing: 

• tokenizaQon: breaks input into parts 

• embedding: convert tokens into numerical vectors 

• encodes semanQcs 

• posiQonal encoding: posiQon of tokens in sequence 

• blocks 

• self-aden#on: contextual relaQonships between 

tokens 

• feed forward: refines tokens 

• generated output appended to input, and repeats

51

Google, AGenQon is All you Need. 

Adv Neural Info Proc Syst. 30. 2017

GenAI: Transformers



Example of transformers: ChatGPT
Ques#on: write code to calculate the factorial of a number 

ChatGPT said: 

Here's a simple Python funcQon to calculate the factorial of 

a number using recursion: 

ExplanaQon 

The base case is when n is 0 or 1, in which case the funcQon 

returns 1. 

For any other posiQve integer n, the funcQon calls itself 

with n−1 unQl it reaches the base case.

52

AlternaQve: IteraQve Approach 

An iteraQve soluQon can be more efficient for large 

numbers, as it avoids the overhead of recursion: 

Both methods will correctly calculate the factorial. The 

iteraQve approach is generally preferred for large n to 

avoid recursion limits.

run on ChatGPT, Nov 10 2024



GenAI: (Stable) diffusion

• three stages: 

• direct diffusion: gradually introduces noise 

into image 

• learning: analyzes how added noise alters 

data 

• reverse diffusion: starts from noise and 

generates image 

• stable diffusion: works in latent space 

• eases computaQonal burden 

• variaQonal autoencoder (VAE) 

• Midjourney and DALL-E

53

Rombach, High-ResoluQon Image Synthesis 

with Latent Diffusion Models, CVPR 2022



Examples of stable diffusion

54

humans buildings nature cartoons

• samples from the 13 billion images 

generated from Stable Diffusion



1- GenAI can write computer code

• write computer exploits 

• automated aGack payloads 

• improved evasion techniques 

• write malware 

• ransomware 

• polymorphic/adaptable malware 

• obfuscated malware 

• adapQve aGack strategies 

• rapid development 

• botnets

55
Yigit, Review of genAI methods in cyber, arXiv, 2024

Offensive uses

• programmer helper 

• analyze source code 

• detect insecure code 

• fix code vulnerabiliQes 

• code documentaQon 

• programmer replacement 

• generate secure code 

• automate wriQng patches

Defensive uses



• GitHub 

• world's largest source code host 

• > 100 million developers 

• > 420 million repositories 

• genAI 

• 50-60% of Github code is AI 

generated 

• LLMs: generate correct code 65% 

of the Qme

56

YeQsQren, EvaluaQng the Code Quality of AI-

Assisted Code GeneraQon Tools, arXiv, 2023.

Fu, Security Weaknesses of Copilot 

Generated Code in GitHub, arXiv, 2023

1- GenAI can write computer code



• social engineering 

• convincing deep fakes videos 

• fake voices 

• fake phone calls 

• fake texts 

• innovaQve aGack vectors 

• social media manipulaQon 

• phishing campaigns 

• spear phishing 

• hyper-personalized emails

57
Yigit, Review of genAI methods in cyber, arXiv, 2024

Offensive uses

• personalized  training 

• educaQonal content 

• illustrate complex concepts 

• realisQc simula#ons 

• generate fake websites 

• honeypots 

• phishing training 

• training campaigns 

Defensive uses

2- GenAI can generate fakes



Sydney Opera house Beijing Bird’s Nest Olympic Stadium

• what do these have in common? (real, not fake images)

• both designed by Arup Group Limited, a British multinational design and 

engineering company

2- GenAI can generate fakes



• Arup Group Limited (february 2024)

• worker attended video call with CFO

• CFO requested money transfers

• other colleagues joined in on call

• worker transferred US $25 million


• Deepfake extortion

• just one participant on video call 

was real, the worker

• all others: AI generated Deepfakes

2- GenAI can generate fakes



3- GenAI can find computer flaws

• website vulnerability detecQon 

• cra^ aGacks to exploit flaws 

• find so^ware flaws 

• write zero day exploits 

• automated hacking 

• cra^ high level exploitaQon 

strategies 

• penetraQon tesQng strategies

60
Yigit, Review of genAI methods in cyber, arXiv, 2024

Offensive uses

• website vulnerability detecQon 

• patch them before aGack 

• find operaQng systems flaws 

• found mulQple Linux bugs 

• repair vulnerabiliQes 

• penetra#on tesQng 

• risk assessment 

• generate intelligence reports

Defensive uses



• lot of anecdotal evidence showing that 

GenAI can find computer flaws 

• many are fake flaws 

• AI Cyber Challenge (AIxCC) 

• two-year compeQQon run by DARPA 

• award $30 million 

• novel AI systems to secure criQcal code 

• finding vulnerabiliQes in so^ware 

• evidence of true vulnerabiliQes 

• developing fixes 

• final compeQQon at DEF CON 2025

61

3- GenAI can find computer flaws



4- GenAI can simplify data

• simplify some phases of aGacks 

• big data for reconnaissance 

• help privilege escalaQon 

• process data from of breaches 

• help idenQfy lucraQve data 

• e.g. celebrity medical file

62
Yigit, Review of genAI methods in cyber, arXiv, 2024

Offensive uses

• threat intelligence 

• emerging cybersecurity incidents 

• advanced persistent threats (APTs) 

• analyze network traffic 

• anomaly detecQon 

• rapid threat containment 

• incident response 

• enhanced digital forensics 

Defensive uses



• analyze visual evidence 

• surveillance cameras, smartphones, 

or social media 

• automate object detecQon, 

tracking, facial recogniQon 

• expedite analysis 

• improve accuracy and reliability 

• analyze digital conversaQons 

• emails, texts, social media posts 

• extract key informaQon, idenQfy 

paGerns 

• uncover evidence buried in 

mountains of data 

• quickly si^ through terabytes of 

data

63
pedley-smith.uk

4- GenAI can simplify data



64 Zhang, AI Review, 2022

Scalability 

• trained on datasets 

of varying size 

• vast amounts of 

heterogeneous data

Reusability 

• reusable via transfer 

learning  

• trained on more data 

without starQng from 

scratch

Simplicity 

• automaQcally idenQfy 

important features 

• without human 

intervenQon (DL)

Speed 

• training is Qme 

consuming 

• super-fast execuQon 

• typically a few 

seconds to perform 

a task

Advantages of AI/DL



65

Labeling 

• of ground truth 

• supervised learning 

• tedious manuel 

process by experts

Obscure 

• difficult to explain 

reasoning 

• not always fully 

interpretable

Huge Datasets 

• requires thousands 

of datasets to train 

models 

• high quality data 

needed

Hallucina#ons 

• only paGern 

matching 

• cannot reason 

• can make faulty 

connecQons

Disadvantages of AI/DL



Conclusion

• AI is bringing a revoluQon in every 

aspect of life 

• rapidly changing mulQple facets of 

cybersecurity 

• has important benefits for aGacks 

• boost skills of aGackers 

• automates aGacks 

• elevates social engineering 

• has also important benefits for defense 

• find flaws in order to protect them 

• help generate secure code

66
The Far Side



Thank you!

67
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